skip to main content


Search for: All records

Creators/Authors contains: "DeMarco, Jennie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  2. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  3. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  4. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  5. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  6. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  7. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  8. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  9. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less
  10. This data set contains the raw files from flight RU_ALN_TR1_FL007R. The remote sensing imagery is collected using uncrewed aerial vehicles at a series of fire perimeters in larch forests located in northeastern Siberia in 2018 and 2019. Images were collected using visible sensors (blue, green, and red wavelengths) and multispectral sensors (green, red, red-edge, and near-infrared wavelengths). The data were collected perpendicular to fire perimeter boundaries in order to characterize variation vegetation composition and structure between burned and burned forests, and as a function of distance from the unburned forest edge. The resulting images are co-located with field observations of ecosystem properties collected as part of this project that are posted in a related data set (Alexander et al, 2018). Heather Alexander, Jennie DeMarco, Rebecca Hewitt, Jeremy Lichstein, Michael Loranty, et al. 2018. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, June-July 2018. Arctic Data Center. urn:uuid:a5de1514-78d3-449f-aad1-2ff8f8d0fb27. 
    more » « less